
610

The Quantum Theory o f the Electron.

By P. A. M. D irac, St. John’s College, Cambridge.

(Communicated by R. H. Fowler, F.R.S.—Received January 2, 1928.)

The new quantum mechanics, when applied to the problem of the structure 
of the atom with point-charge electrons, does not give results in agreement 
with experiment. The discrepancies consist of “ duplexity ” phenomena, the 
observed number of stationary states for an electron in an atom being twice 
the number given by the theory. To meet the difficulty, Goudsmit and Uhlen- 
beck have introduced the idea of an electron with a spin angular momentum 
of half a quantum and a magnetic moment of one Bohr magneton. This model 
for the electron has been fitted into the new mechanics by Pauli,* and Darwin,f 
working with an equivalent theory, has shown that it gives results in agreement 
with experiment for hydrogen-like spectra to the first order of accuracy.

The question remains as to why Nature should have chosen this particular 
model for the electron instead of being satisfied with the point-charge. One 
would like to find some incompleteness in the previous methods of applying 
quantum mechanics to the point-charge electron such that, when removed, 
the whole of the duplexity phenomena follow without arbitrary assumptions. 
In the present paper it is shown that this is the case, the incompleteness of 
the previous theories lying in their disagreement with relativity, or, alternate- 
tively, with the general transformation theory of quantum mechanics. I t  
appears that the simplest Hamiltonian for a point-charge electron satisfying 
the requirements of both relativity and the general transformation theory 
leads to an explanation of all duplexity phenomena without further assumption. 
All the same there is a great deal of truth in the spinning electron model, at 
least as a first approximation. The most important failure of the model seems 
to be that the magnitude of the resultant orbital angular momentum of an 
electron moving in an orbit in a central field of force is not a constant, as the 
model leads one to expect.

* Pauli, ‘ Z. f. Physik,’ vol. 43, p. 601 (1927).
t  Darwin, ‘ Roy. Soc. Proc.,’ A, vol. 116, p. 227 (1927).
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Quantum Theory o f Electron. 611

§ 1. Previous Relativity Treatments.
The relativity Hamiltonian according to the classical theory for a point 

electron moving in an arbitrary electro-magnetic field with scalar potential A0 
and vector potential A is

F =  (~  +  l-A ,,)3 +  (p +  j-  A)* +  mH\

where p is the momentum vector. I t  has been suggested by Gordon* that the 
operator of the wave equation of the quantum theory should be obtained from 
this F by the same procedure as in non-relativity theory, namely, by putting

W = ih %  ,
31

pr =  — ihJL  , 2, 3,

in it. This gives the wave equation

-f- m2c2 4» =  o, ( i )

the wave function ^ being a function of x\, x2, x3, This gives rise to two 
difficulties.

The first is in connection with the physical interpretation of <1>. Gordon, 
and also independently Klein,f from considerations of the conservation theorems, 
make the assumption that if 4w 4»n are two solutions

?mw '  2tnc*{lh 4 W dt d t)  +  2eA° ^ '^ 4
and

€> f • — — C -• 1
Imn f i t   ̂ ^  (V™ grad un bn grad bin) -f- 2 — ATO<j>TO<j>wj

are to be interpreted as the charge and current associated with the transition 
m n. This appears to be satisfactory so far as emission and absorption of 
radiation are concerned, but is not so general as the interpretation of the non
relativity quantum mechanics, which has been developed^ sufficiently to enable 
one to answer the question : What is the probability of any dynamical variable

* Gordon, ‘ Z. f. Physik,’ vol. 40, p. 117 (1926). 
t  Klein, ‘ Z. f. Physik,’ vol. 41, p. 407 (1927).
% Jordan, ‘ Z. f. Physik,’ vol. 40, p. 809 (1927); Dirac, * Roy. Soc. Proe.,’ A, vol. 113, 

p. 621 (1927).
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612 P. A. M. Dirac.

at any specified time having a value lying between any specified limits, when the 
system is represented by a given wave function 4» ? The Gordon-Klein inter
pretation can answer such questions if they refer to the position of the electron 
(by the use of pnw), but not if they refer to its momentum, or angular momentum 
or any other dynamical variable. We should expect the interpretation of the 
relativity theory to be just as general as that of the non-relativity theory.

The general interpretation of non-relativity quantum mechanics is based on 
the transformation theory, and is made possible by the wave equation being of 
the form

(H —- W) 4* =  0, (2)

i.e., being linear in W or djdt, so that the wave function at any time determines 
the wave function at any later time. The wave equation of the relativity 
theory must also be linear in W if the general interpretation is to be possible.

The second difficulty in Gordon’s interpretation arises from the fact that if 
one takes the conjugate imaginary of equation (1), one gets

\ 2
---- h ~  A0 + p -f- — A ) m2c2 

c 4 =  0,

which is the same as one would get if one put — e for e. The wave equation 
(1) thus refers equally well to an electron with charge e as to one with charge 
— e. If one considers for definiteness the limiting case of large quantum numbers 
one would find that some of the solutions of the wave equation are wave packets 
moving in the way a particle of charge — e would move on the classical theory, 
while others are wave packets moving in the way a particle of charge e would 
move classically. For this second class of solutions W has a negative value. 
One gets over the difficulty on the classical theory by arbitrarily excluding 
those solutions that have a negative W. One cannot do this on the quantum 
theory, since in general a perturbation will cause transitions from states with 
W positive to states with W negative. Such a transition would appear experi
mentally as the electron suddenly changing its charge from — e to e, a 
phenomenon which has not been observed. The true relativity wave equation 
should thus be such that its solutions split up into two non-combining sets, 
referring respectively to the charge —- e and the charge

In the present paper we shall be concerned only with the removal of the first 
of these two difficulties. The resulting theory is therefore still only an approxi
mation, but it appears to be good enough to account for all the duplexity 
phenomena without arbitrary assumptions.
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Quantum Theory of Electron. 613

§ 2. The Hamiltonian for No Field.
Our problem is to obtain a wave equation of tbe form (2) which shall be 

invariant under a Lorentz transformation and shall be equivalent to (1) in the 
limit of large quantum numbers. We shall consider first the case of no field, 
when equation (1) reduces to

(— p02 +  p2 +  m2c2) 41 =  0 (3)
if one puts

The symmetry between p 0 and pv p 2, required by relativity shows that, 
since the Hamiltonian we want is linear in p 0, it must also be linear in 
and p 3. Our wave equation is therefore of the form

(Po +  tt-iPi +  <*2^2 a3̂ 3 +  P) 41 — (4)
where for the present all that is known about the dynamical variables or 
operators oq, a2, a3, (3 is that they are independent of p 0, pv p 3, that they 
commute with t, xv x2, x3. Since we are considering the case of a particle 
moving in empty space, so that all points in space are equivalent, we should 
expect the Hamiltonian not to involve t, aq, x2, x3. This means that oq, a2, 
a3, [3 are independent of t, xv x2, x3, i.e., that they commute with p 0, pv p 2, 
p3. We are therefore obliged to have other dynamical variables besides the 
co-ordinates and momenta of the electron, in order that oq, a2, a3, (3 may be 
functions of them. The wave function ^ must then involve more variables 
than merely xv x2, x3, t.

Equation (4) leads to

0 = (— Po +  *lPl + a2̂2 + a3^3 + P) (̂ 0 + al2h + a2̂2 + &zP3 + P) +
=  [ -  Po2 +  2  o q 2p ^  +  £  (oqoc2 +  a2oq) pxp2 +  (32 +  £  (oq (3 +  poq) p j  <J>, (5)

where the £ refers to cyclic permutation of the suffixes 1, 2, 3. This agrees with 
(3) if

ar2 =  1, aras -(- asar =  0 (r s) I
j 2, 3.

p2 =  m2c2, ocrp +  (3ar =  0 J

If we put [i =  a4mc, these conditions become

oq2 =  1 aMa„ +  oc„ocM =  0 (p. ^v) jjl, v =  1, 2, 3, 4. (6)

We can suppose the aM’s to be expressed as matrices in some matrix scheme, 
the matrix elements of aM being, say, ocM (C K")- The wave function must
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614 P. A. M. Dirac.

now be a function of Z, as well as aq, x2, x t. The result of aM multiplied into <\>
will be a function (aM40 of xv x2, x3, t, defined by

M )  (x,t, t, C).

We must now find four matrices aM to satisfy the conditions (6). We make 
use of the matrices

which Pauli introduced* to describe the three components of spin angular 
momentum. These matrices have just the properties

crr2 =  1 aras +  asa = 0, (r ^  s), (7)

that we require for our a’s. We cannot, however, just take the cr’s to be three 
of our a’s, because then it would not be possible to find the fourth. We must 
extend the a’s in a diagonal manner to bring in two more rows and columns, 
so that we can introduce three more matrices pj, p2, p3 of the same form as 
av <j2, a3, but referring to different rows and columns, thus :—

C1 = "0 1 0 0" =  Ir0 - i 0 0" a3 = "1 0 0 0"

1 0 0 0 ■ ) i 0 0 0 0 - 1 0 0
-<

0 0 0 1
y

0 '. 0 0 - i
> <

0 0 1 0

Lo 0 1 0^ .0 0 0^ ^0 0 0 - L

Pi = "0 0 ' 1 (T P2 = "0 0 —i 0" ?3 = r l 0 0 0"

4
0

'
0 0 1

> 4
0

1
0 0 - i

► <
0 1 0

-----K,
O

l l 0 0 0 i 0 0 0 0 0 - 1 0

lo 1 0 0_, 0V- 0 0„ ^0 0 0 —l .

The p’s are obtained from the a’s by interchanging the second and third rows, 
and the second and third columns. We now have, in addition to equations (7)

Pr2 =  1 prps +  PsPr =  0  #  A  1
and also . 0  )

prd$ =  dtpf.

* Pauli, loc. cit.
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Quantum Theory o f Electron. 615

If we now take

a l — PlCTl> a 2 =  PlC’25 a 3 ~  Pict3> a4 == ?3>

all the conditions (6) are satisfied, e.g.,

«i2 =  Pi^iPi^i =  P iV  =  1 
a 3a 2 =  Pi <7i Pi <72 =  Pi 2(Ji g 2 =  — P i2ff2CTi  =  ~  a 2a i-  

The following equations are to be noted for later reference

PlP2 — P̂S — P2P1

^1̂ 2 == 1̂ 3 =  j
(8)

together with the equations obtained by cyclic permutation of the suffixes. 

The wave equation (4) now takes the form

[Po +  Pi ( > p) +  p3wc] =  0, (9)

where a* denotes the vector (cq, c2, cr3).

§ 3. Proof of Invariance under a Transformation.
Multiply equation (9) by p3 on the left-hand side. I t becomes, with the help 

of (8),
[psTo +  ^p2 (°iPi +  +  azPz) +  me] <j> =  0.

Putting
Po =  WA’

we have
P3 =  Y4> p2ar =  yr, r =  1 ,2 ,3 , (10)

+  me]  ̂=  0, (x =  1, 2, 3, 4. (11)

The transform under a Lorentz transformation according to the law

P/x '̂ ‘v

where the coefficients are c-numbers satisfying

Î'T) TiT0^r(/t,r   3fx(/*

The wave equation therefore transforms into

[*2 y f p f  +  m<j> =  0, (12)

y ij. ==zTivctfXV‘Yi>.

Now the yM, like the oy, satisfy

Tm2 =  1 > YmY*' +  Y A 0, ([X ^  v).

where

 D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//r

oy
al

so
ci

et
yp

ub
lis

hi
ng

.o
rg

/ o
n 

08
 M

ar
ch

 2
02

4 



616 P. A. M. Dirac.

These relations can be summed up in the single equation

We have
YmY*' +  Y*Yn =  2Sm,.

YmV  +  Ŷ Ym' =  2 tA «,a (TtTa +  TaTt)
=== 2S t  ̂ct/fiT ctiv\ 8t\
== 2S t =  2SM„.

Thus the y /  satisfy the same relations as the yM. Thus we can put, analogously 
to (10)

Y /  =  9 sY r ' =  p2V

where the p'’s  and g '\s are easily verified to satisfy the relations corresponding 
to (7), (7') and (8), if p2' and p / are defined by p2' =  — tyi'y/ys', pi' =  — ipzps- 

We shall now show that, by a canonical transformation, the p'\s and c '’s 
may be brought into the form of the p’s and o’s. From the equation p3'2 =  1, 
it follows that the only possible characteristic values for p3' are ± 1. If one 
applies to p3' a canonical transformation with the transformation function p/, 
the result is

Pi'Ps' (Pi' ) '1 =  -  Ps'Pr' (p/) " 1 =  -  P3'-

Since characteristic values are not changed by a canonical transformation, 
p3' must have the same characteristic values as — p3'. Hence the characteristic 
values of p3' are +  1 twice and — 1 twice. The same argument applies to each 
of the other p,5s, and to each of the c/’s.

Since p3' and g3' commute, they can be brought simultaneously to the diagonal 
form by a canonical transformation. They will then have for their diagonal 
elements each 1 twice and — 1 twice. Thus, by suitably rearranging the 
rows and columns, they can be brought into the form p3 and er3 respectively. 
(The possibility p3' =  d; o3' is excluded by the existence of matrices that 
commute with one but not with the other.)

Any matrix containing four rows and columns can be expressed as

C ~j~ S rCr< 7r- j-  H rc / p r  +  ^rs^rspr^s (1 ^ )

where the sixteen coefficients c, cT, c/, crs are c-numbers. By expressing cr/ 
in this way, we see, from the fact that it commutes with p3' =  p3 and anti
commutes* with g 3' =  o3, that it must be of the form

(7/ =  CjCq -|- C2G2 -|- C ^ p ^  +  C32p3<72,

* We say that a anticommutes with b when =  — ba.
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Quantum Theoi'y o f Electron. 617

i.e., of the form

The condition cr/ 2 =  1 shows that a12a.21 =  1, 4a43 =  1. If we now apply
the canonical transformation : first row to be multiplied by )* and third
row to be multiplied by (ai3la3f ,  and first and third columns to be divided 
by the same expressions, ax will be brought into the form of cv and the diagonal 
matrices a3 and p3' will not be changed.

If we now express p/ in the form (13) and use the conditions that it commutes 
with <7/  =  cq and a3 — a3 and anticommutes with p3' =  p3, we see that it 
must be of the form

Pi =  cxp4 +  c2 p2-

The condition p/ 2 =  1 shows that c/ 2 -fi c2'2 =  1, or c / =  cos 0, c2' =  sin 0. 
Hence p/ is of the form

/
Pi =

(—o•«*»roo

Tooo

■< >
e*0 0 0 0

^0 eie 0 0 ^

If we now apply the canonical transformation : first and second rows to be 
multiplied by e16 and first and second columns to be divided by the same 
expression, p / will be brought into the form pl5 and ax, cr3, p3 will not be altered. 
p2' and <r2' must now be of the form p2 and cr2, on account of the relations
ip2' — 9z ?1 ’ == ct3 al ‘

Thus by a succession of canonical transformations, which can be combined 
to form a single canonical transformation, the p”s and a '’s can be brought into 
the form of the p’s and cr’s. The new wave equation (12) can in this way be 
brought back into the form of the original wave equation (11) or (9), so that 
the results that follow from this original wave equation must be independent 
of the frame of reference used.
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618 P. A. M. Dirac.

§ 4. The Hamiltonian for an Arbitrary .

To obtain the Hamiltonian for an electron in an electromagnetic field with 
scalar potential A0 and vector potential A, we adopt the usual procedure of 
substituting p 0 +  e/c . A0 for p 0 and p +  e/c . A for p in the Hamiltonian 
for no field. From equation (9) we thus obtain

[ po+ | a o+ P 1( cr»P +  ^A ) +  p 3mc 4# =  0. (14)

This wave equation appears to be sufficient to account for all the duplexity 
phenomena. On account of the matrices p and cr containing four rows and 
columns, it will have four times as many solutions as the non-relativity wave 
equation, and twice as many as the previous relativity wave equation (1). 
Since half the solutions must be rejected as referring to the charge -f- on the 
electron, the correct number will be left to account for duplexity phenomena. 
The proof given in the preceding section of invariance under a Lorentz trans
formation applies equally well to the more general wave equation (14).

We can obtain a rough idea of how (14) differs from the previous relativity 
wave equation (1) by multiplying it up analogously to (5). This gives, if we 
write e' for e/c

0 =  [— (To +  e'A0) +  p! ( o“, p +  e'A) -f p3mc] 
X [(To +  e'A0) +  pi ( o*, p +  e'A) 4- p3mc]

=  [— (Po +  e'A0)2 +  ( o’, p +  e'A)2 +  m2c2

+  Pi { ( ,  P +  e'A) (p0 +  e'A0) — (p0 +  e'A0) ( , p +  e'A)}] ]>. (15)

We now use the general formula, that if B and C are any two vectors that com
mute with cr

( o’, B) ( o", C) =  2  cq2 BjOĵ -j- 2  (oqcr2 BjC2 -J- BjgCj)

— (B, C) +  i 2 a 3(B1C2- B 2C1)

=  (B ,C ) +  * ( o - , B x C ) .  (16)

Taking B — C =  p -f e'A, we find

( cr, p +  e'A)2 =  (p +  e'A)2 +  i2 a3

V(P\ + e'-̂ -i) (Pz + — + +
—(p +  e'A)2 -f- he'( o’, curl A).
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Quantum Theory o f Electron. 619

Thus (15) becomes

0 =  (p0 +  e'A0)2 +  (p +  e'A)2 +  m2c2 , curl A)

— j ( cr, grad Ao +

— [— (poe'A-o)2 +  (p +  d A)2 +  -j- e'h ( cr, H) -j- ( & , E)] <]>,
where E and H are the electric and magnetic vectors of the field.

This differs from (1) by the two extra terms

in F. These two terms, when divided by the factor can be regarded as the 
additional potential energy of the electron due to its new degree of freedom. 
The electron will therefore behave as though it has a magnetic moment . o-
and an electric moment ieh/2mc. px o*. This magnetic moment is just that 
assumed in the spinning electron model. The electric moment, being a pure 
imaginary, we should not expect to appear in the model. I t is doubtful whether 
the electric moment has any physical meaning, since the Hamiltonian in (14) 
that we started from is real, and the imaginary part only appeared when we 
multiplied it up in an artificial way in order to make it resemble the Hamiltonian 
of previous theories.

§ 5. The Angular Momentum Integrals for Motion a Central Field.
We shall consider in greater detail the motion of an electron in a central 

field of force. We put A =  0 and e'A0 =  V (r), an arbitrary function of the 
radius r,so that the Hamiltonian in (14) becomes

We shall determine the periodic solutions of the wave equation F — 0, which 
means that p 0 is to be counted as a parameter instead of an operator; it is, in 
fact, just 1/c times the energy level.

F =  Po +  V -f- Pi ( c , p) -f- p

We shall first find the angular momentum integrals of the motion. The 
orbital angular momentum m is defined by

m =  x X p,
and satisfies the following “ Vertauschungs ” relations 

mxxx — xxmx =  0,

mxpi — pxmx =  0,

in X m =  ihm, n \h — mxm z =  0, J

(17)
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620 P. A. M. Dirac.

together with similar relations obtained by permuting the suffixes. Also m 
commutes with r, and with pr, the momentum canonically conjugate to 

We have
F — =  Pi { mi ( a , p) — ( o ', p) }

=  Pi ( , mjp — p
=  ih?1 (a 2p 3 — a3p 2),

and so
mF — Fm  — ihpx cr X p. (18)

Thus m  is not a constant of the motion. We have further 

ffiF — Fcq =  pi {<7i ( a  , p) — ( o*, p)

=  Pi — O-Oi, P)

=  2 ’̂pi (®aP2 — CT2i>3)5
with the help of (8), and so

crF — Fcr — — 2ipi X p.
Hence

(m -j- \h  o-) F — F (m -j- a ) =  0.

Thus m - | - ^ o ‘ (= M  say) is a constant of the motion. We can interpret this 
result by saying that the electron has a spin angular momentum of o*, which,
added to the orbital angular momentum m, gives the total angular momentum 
M, which is a constant of the motion.

The Vertauschungs relations (17) all hold when M’s are written for the m’s. 
In particular

M X M =  ihM and M2M3 =  M3M2.

M3 will be an action variable of the system. Since the characteristic values of 
m3 must be integral multiples of h in order that the wave function may be 
single-valued, the characteristic values of M3 must be half odd integral multiples 
of h. If we put

M2 =  (j2- i  )W(19)

j  will be another quantum number, and the characteristic values of M3 will 
extend from (j — D hto (— j  -j- ^) h*  Thus j  takes integral values.

One easily verifies from (18) that m 2 does not commute with F, and is thus 
not a constant of the motion. This makes a difference between the present 
theory and the previous spinning electron theory, in which m 2 is constant, 
and defines the azimuthal quantum number Jc by a relation similar to (19). 
We shall find that our j  plays the same part as the k of the previous theory.

* See ‘ Roy. Soc. Proc.,’ A, vol. I l l ,  p. 281 (1926).
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Quantum Theory of Electron. 621

§ 6. The Energy Levels for Motion in a Central Field.
We shall now obtain the wave equation as a differential equation in with 

the variables that specify the orientation of the whole system removed. We 
can do this by the use only of elementary non-commutative algebra in the 
following way.

In formula (16) take B — C =  m. This gives

( a , m)2 =  m2 +  i( cr, m X m) (20) 
=  (m -f- \ h cr )2 — ( cr, m) — JA2 a*2 — A( a , m)
=  M2 — 2A ( a , m) — f  A2.

Hence
{( cr, m) -|- A}2 =  M2 +  jA2 =  j 2h2.

Up to the present we have defined j  only through j'2, so that we could now, if 
we liked, take jh  equal to ( cr, m) -f- A. This would not be convenient since we 
want j  to be a constant of the motion while ( a-, m) -|- A is not, although its 
square is. We have, in fact, by another application of (16),

(O', m) (cr, p) = (cr, m X p) 
since (m, p) =  0, and similarly

( cr, p) ( cr, m) = i  ( cr, p X m),
so that

( 5 ***) ( j p) ~t~ ( ■ p) ( ^  5 n i) — i'Lc\ {nt./Ps WV3P2 +
=  . 2ihp1 — 2A ( o*, p),

or
{( m) +  A} ( cr, p) +  ( cr, p) {( cr, m) +  A} =  0.

Thus ( cr, m) -f- A anticommutes with one of the terms in F, namely, pt ( a , p), 
and commutes with the other three. Hence p3 {( cr, m) -f- A) commutes with all 
four, and is therefore a constant of the motion. But the square of p3{( cr, m)-f-A} 
must also equal j 2A2. We therefore take

jA =  p3 {( cr, m ) +  A}. (21)
We have, by a further application of (16)

( cr, x) ( a ,  p) =  (x, p) +  ( cr, in).
Now a permissible definition of pr is

(x, p) =  rpr +

( cr, m) =  — A.

( o”, x) ( cr, p) =  rpr -|- <p3j/A.

and from (21) 

Hence

2 uVOL. CXVII.— A.

( 22)
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622 P. A. M. Dirac.

Introduce the quantity s defined by

r e = p 1 (c r,x ) . (23)

Since r commutes with px and with ( a , x), it must commute with e. We thus 
have

r2e2 =  [p1(o ‘, x )]2 =  (ff, x )2 =  x2 == r2 
or

s2= l .

Since there is symmetry between x and p so far as angular momentum is con
cerned, px ( cr, x), like px ( a , p), must commute with M and Hence e com
mutes with M and j. Further, e must commute with since we have

which gives 

which reduces to

( a , x) (x, p) — (x, p) ( cr, x) =  ( cr, x),

re (rpr -f- ih) — (rpr -f- ih) re =  ihrz,

epr — pre =  0.

From (22) and (23) we now have

rspi ( a ,  p) =  rp, -f 
or

Pi ( o*, p) =  epr +  izp3jhlr.
Thus

F =  Po +  V +  epT +  iep +  p3mc. (24)

Equation (23) shows that s anticommutes with p3. We can therefore by a 
canonical transformation (involving perhaps the x’s and p’s as well as the c’s 
and p’s) bring s into the form of the p2 of § 2 without changing p3, and without 
changing any of the other variables occurring on the right-hand side of (24), 
since these other variables all commute with e. will now be of the form
ip2P3 =  — pj, so that the wave equation takes the form

F<]> =  [p0 +  V +  ?2p r — pjhfr  +  P =  0.

If we write this equation out in full, calling the components of ^ referring to 
the first and third rows (or columns) of the matrices and /̂s respectively, 
we get

(F<W„ =  (p„ +  V) <Jv -  h £  f t  - f  f ,  +  mef.  =  0,

(F+), =  (j>„ +  V) +  h ^  tJ.. - f t . -  mef„ =  0.
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Quantum Theory of Electron. 623

The second and fourth components give just a repetition of these two equations. 
We shall now eliminate <J;0. If we write AB for p0 +  V +  the first equation 
becomes

which gives on differentiating

92 , . i d ,  3
575 +0 +  i  -  ^  h0/-2 B 57 +  If +“

[ — (Po +  v  — mc> Vf V-
, 1 av  .

+  l  dr ^

- ^ | „  +  V ) . - . V f c + ( ^ ^ g ) ( » + j
'P/S-

This reduces to

_?! > | 'r (^o+ v )2 -  mV _  j  (j + 1 n  ,| i gv  / -  +  i , -
0r2 ™ +  L A2 r2 J ̂  BA 0r \ 0r ~r/

0. (25)

The values of the parameter p 0 for which this equation has a solution finite 
at r =  0 and r =  qo are 1 /c times the energy levels of the system. To compare 
this equation with those of previous theories, we put ^  =  ry , so that

$ L , + ? i , +
dr2 "

(Vo +  V)2 ~  ^2c2 _  (j 4-1)'
h2 r2

y _ J _ 3 v / A + i ± i \
BA dr [dr r / x = o .

(26)

If one neglects the last term, which is small on account of B being large, this 
equation becomes the same as the ordinary Schroedinger equation for the system, 
with relativity correction included. Since j  has, from its definition, both 
positive and negative integral characteristic values, our equation will give 
twice as many energy levels when the last term is not neglected.

We shall now compare the last term of (26), which is of the same order of 
magnitude as the relativity correction, with the spin correction given by Darwin 
and Pauli. To do this we must eliminate the dy/dr term by a further trans
formation of the wave function. We put

X =  B~*Xi>
which gives

I 2 8 - . f(Po +  V)2 — m2c2 j  (.?+ 1)1 
dr2Xl +  rd~rX l +  L T2-------

, r i i 3 V  1 0*V , 1 1 /0V\21 _ n 
+  LBA r dr 2 BA 0 r2 + * B2A2 (dr / J * )

2 u 2
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624 Quantum Theory of Electron.

The correction is now, to the first order of accuracy

BA\r dr dr2/

where BA — 2 me (provided p 0 is positive). For the hydrogen atom we must put
V" =  e2/cr. The first order correction now becomes

_ 2̂ ( i + 1 ) ' <28)

If we write — jfor j  -f 1 in (27), we do not alter the terms representing the 
unperturbed system, so

2mc2r3 ^ ^

will give a second possible correction for the same unperturbed term.
In the theory of Pauli and Darwin, the corresponding correcting term is

2 mh&r3̂ ^  ^

when the Thomas factor |  is included. We must remember that in the Pauli- 
Darwin theory, the resultant orbital angular momentum A plays the part of 
our j. We must define A by

m 2 =  A (A -j- 1) A2

instead of by the exact analogue of (19), in order that it may have integral 
characteristic values, like j .We have from (20)

or

hence

( a ,  m )2 == A (A -f- 1) A2 — A («■, m) 

{( a , m) +  |A}2 =  (A +

( a , m) =  AA or — (A +  1) A.

The correction thus becomes

e2
2mc2r3

e2
2 mc2r3(A +  1),

which agrees with (28) and (28'). The present theory will thus, in the first 
approximation, lead to the same energy levels as those obtained by Darwin, 
which are in agreement with experiment.
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